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ANGLE-OF-ARRIVAL FLUCTUATION IN BEAM
PROPAGATION THROUGH TURBULENT ATMOSPHERE

Song Zhengfang

Anhui Research Institute
of Fine Optical Machinery
Chinese Academy of Sciences
Hefei City, P.O. Box 1125,
230031

ABSTRACT. In this paper, starting out near-axis
approximation and considering the correlation of
intensity fluctuation, one derives a universal
formula (Eq. 14) of angle-of-arrival (AOA) fluctuation
variance under the assumptions of a Markov random
process. For plane and spherical wave propagation,
analytic expressions of are obtained. Some experimental
data are used to compare with analytic results. It shows
that both are identical.
KEY WORDS: Turbulent flow; propagation through atmosphere,
angle of arrival.

1. Introduction

After propagation through the atmosphere, the location of
optical images on the focal plane of receiving telescopes shows
random trembling due to perturbation of turbulent flow. This is
the result of so-called fluctuations of beam angle of arrival.
In the past two decades, a huge amount of theoretical and
experimental research was focused on this subject, yet most
studies were devoted to the characteristics of the weak
fluctuation zone. As for the angle of arrival in the strong




fluctuation zone, little was known thus far. Experiment shows
that the weak perturbation theory[l] can be used to explain
satisfactorily the experimental laws for weak turbulent flows.
However, it will remarkably deviate from the experimental values
with strong turbulent flows or long distances([2].

It is well known that under strong turbulent flows, the
Markov approximation can be used to treat wave propagation
equations with satisfactory results. However, while considering
the correlation functions of intensity, it is possible that
correct results still cannot be obtained if the second-order
moment of fields is not taken into calculations. 1In
reference[3], we tentatively discussed the angle of arrival by
using Markov approximation and wave complex amplitude normal
distribution approximation. In this paper, we will further
discuss the expressions of angle-of-arrival variance, which are
applicable to the entire fluctuation zone. In addition, we will
also detail the plane wave and spherical wave propagation and
compare the existing theories with experimental results. The
comparison suggests that our practice here is rational.

2. Formula Derivation

The basic expression for the angle of arrival a, is[3]

L
o1 ’
a= P Ld'fﬂ'd'PV,mI(s,ﬁ)T(b‘)

where P, is total flux received, L is propagation distance,

(1)

vp is the gradient operator of horizontal vector 7 , n; is the
fluctuation value of refractivity, 101ﬁ7=uﬁ,ﬁwlcjﬂ,§¢,3) is
the complex amplitude of waves, and T(P)is the transfer function
of the receiving telescope. From Eg. (1), the expression for the

angle-of-arrival variance can be derived as follows: o,
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where <...> is the system integration average selected. Based on
Markov approximation and the assumption that the fluctuation of
the angle of arrival mainly comes from phase fluctuation, the
following can be verified:
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where k=2n/A; A is wavelength, %l({,P) is the phase structure

(4)

function, which already contains the integration of distance.

To conduct a general investigation, a wave field in Gaussian

form is adopted. At this instant, u@iﬁ7=u¢xpp-.ﬁi)
7 ki
a‘2=ao'2-j_k_
F

where o, is the equivalent radius of laser beam at the
transmitting end, and F is the curvature radius of the wavefront.
Next, the transfer function T(p ) is also believed to be in
Gaussian form )
T(F)= Toexp(~ £y
or (6)
where T, is penetration coefficient, ap is the radius of the

receiving telescope.

Under the above condition, it is also necessary to know the
form of the intensity correlation function  (I(,5)(E,P) in
solving Eq. (4), which used to be selected as

CICEPIE, 53> = KIEB)Y IE, By
This is approximately effective in the weak fluctuation zone, but
in the entire fluctuation zone, the correlation of intensity
fluctuation must be taken into account. We confirmed[4] that it
would be appropriate to adopt the following formula:
SICE,POIE 52> = KTE,P) I(E, P)Y+ITH(E, By, 5P (7)
where Ty¢,5,7,) 1is the second-order moment (or coherent




function) of the field, whose expression was given by Wang and
Plonus[5] by using the quadratic approximation. Here, the
coherent light source can be rewritten as follows:

/ (8)

(¢, p..P)= —2' (-—) exp(—ibp; * p;— -dp3
p= 5 Gi+B) A c=(l-—}f—)z+(l+y2)f‘2
.
a= 5 + L+ Lia- Ly =B~ )+ (57 +0+ 2 1oy
A e S S I g= =2

where f is the Feiner number of the transmission field, g is the
specific value between beam width and the coherent length of
spherical wave p, or the relative beam width in the turbulent
atmosphere. The expression of p, is

=(0.546C2 K2 L)~ (9)
where C, is the refractivity-fluctuation structure constant,

which indicates the intensity of turbulent flows.

In T.(¢,p.,p) r =0 is taken as the average intensity
< I(¢,7) >. By replacing Ry=9 and R,=p, in Eq. (8) and
introducing variables R;“%GW+ED’ and F=ﬁ}—g , and then
inserting all these together with Eq. (6) in Eq. (4),
following can be derived:

o= T “1* (—f—) T2 HﬂdzpdzRV;’,@s(é )
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1
In the above equation, we already let
o= (cod) ™" + 52
=d+(4d%)"!
By integrating variable R in Eq. (10) first and then

calculating p,, Eq. (10) will change to
(11)
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In the calculations, we already allowed the following:

oy i=4d"+ b’
Like a;, a, also has a dimension of length. It can be believed
that they have equivalent integrating radii of different values.
Their difference is that a, not only is related to beam radius
and receiving radius, but also is determined by the intensity of

turbulent flows.

Eq. (11) is a general expression of Gaussian beam angle-of-
arrival variance. Since this kind of beam has a very complicated
phase structure function, there is generally no analytic solution
at all. Therefore, to understand the characteristics of o2,
appropriate measures have to be taken in response to specified
conditions. As an example, the following discussion is devoted
to plane wave and spherical wave propagation so as to ascertain

the appropriateness of our measures here.
3. Plane Wave Propagation

Both theoretical analysis and practical examination suggest
that the phase structure function derived based on the classical
perturbation method[1l] is also applicable to the strong
fluctuation zone, which serves as the foundation for our

discussion.

The phase structure function of plane waves can be expressed

in the following equation:
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(12)

where @,(K) is the density function of turbulence spectrum, Jy(x)
. 2 2

is zero-order Bessel function. Considering Vel ~JupK)]=KJ(Kp)

in Kolomogorov turbulence modeling. Thus, Eq. (11) changes to
O,(K)=0.033C2K~"?
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The first part of integration of variable K is easy to make,

while its second part can also be solved through the ready
integration formula after x=K?{/k is replaced. Based on this
outcome, the integrating operation can be done for p, resulting
in 1%
1+m 1.16Q2
{1+ 1 +m™®

2=2 564(2a,)'mJ’ dEC(&)

: . 5 .
TG F (- -2- L LiQ)+moF (- 215 Lim)D) (14)

where we already let

2
o ka?
m= —% , Q= —

oy 2¢
Im(+) suggests selecting the imaginary part of the function in
the parentheses, ,F,(a;,a,;b;x) is the hypergeometric function,
Q is the Feiner number of the integration field.

Eq. (14) is the basic equation for the angle-of-arrival
variance of plane waves, which can be solved as long as the
felationship between turbulence intensity and distance is
ascertained. To save space, here we only discuss the uniform
turbulent flows. 1In this case,Cﬁ@)is a constant, so Eq. (14) can
be rewritten as:

) 1
2=2.564C2L(2a,) 'ﬂ(——”’"m ){1+ ——11'1695,': Im(i’s"’
m
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As far as the collimated laser beam with limited space is
concerned, it can satisfy the condition py>x;, when turbulent
flows are extremely weak. 1In addition, in the far field,

(k/EK1) oy =a,~ay ", and the specific value of the integrating
radius m=1. Meanwhile, the condition of the Feiner number of the
integration field Q«l1 can also be established. Therefore,

Eq. (15) can be simplified as:

=2.56C2L(2a;)""" (Q«1) (16)




This agrees closely with the results of the weak perturbation

theory(1l].

For the convenience of calculations, the hypergeometric
function can be expressed in series. Then Eq. (15) will become a
simple formula as follows: gl=g}f(Q)

_ 14+m™ 1.16Q" (17)
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Fig. 1. £(Q) as a function of @

Fig. 1 lists part of calculations conducted for function £(Q).
It is known from these calculations that in general situations,
¢} is related not only to turbulence intensity (,; , propagation
distance L, and receiving aperture op as usual, but is also
related to the Feiner parameters of the receiving field and the
specific value of the integrating radius. This is probably




because the effect of turbulent flows on light beams depends on
the relative relations between beam scale and turbulence scale.
While the weak perturbation theory deals with infinite plane
waves, whose scale is much larger than turbulence scale, and
therefore, it is not involved in such relations as mentioned

here.
4. Spherical Wave Propagation

The phase structure function of spher1ca1 waves is

#5(8,7)=8x’ kfds (dKKd) (K1 = Jo( == K"i )cos? [ —>—F 2(11&_ 9 (18) ,
Noting that IR Ksp ]o Ii‘ Jo( K%P ) and
cos?x= T (1+c0s2x) ’ under the condition of the

Kolmogorov turbulence spectrum, Eq. (11) changes to
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By further integrating variable p and considering that a;>>a, can
always be satisfied in the case of spherical waves, i.e., a,=ar,
the general expression of the angle-of-arrival variation of

spherical waves is as follows:
L
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where we already let ¢
mp= -izz , Qp= kas
ar - 2L

Just in the case of plane waves, Eq. (20) can also be solved
as long as the function form of C¥¢is known. For the uniform

optical path, we obtained
02=0.9615C2L2a1)" " f (Q )
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where  G;(x|a,;b) is the Meijer G function. The relationships
between the G function and the hypergeometric function[7] were
already made use of in solving Eq. (21).

The G function is extremely complex in nature. However,
with it we can analyze the properties of function f(Q;) in the
near field (Qr>1) and far field (Qr;). Under the conditions of
the near field, mp=1+ Q) , while

. 1 s s 8.1
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Then, Eq. (22) can be rewritten as
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Under the conditions of the far field, my= A4Q} , while
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Thus, Eq. (22) becomes
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Once the Feiner number of the receiving field £r and the

coherent length of spherical waves Pe are determined, function




can be derived. Fig. 2 and Fig. 3 present part of calculations

of /(@) . 1In Fig. 2, SQ)—q;m under the limitation of
Qr»1 , because at this point, m; is equal to Qf . In Fig.

3, only a few numbers of m;<l are selected, because in ﬁhe far

field, the condition of py<a, can always be satisfied.

1.5-\ 1.5F m,=0.1

d
S~ !
0.5F i
Q?\\ 0.5
0.0 . L s . 1 1 I 0 1 ! [ |
1.0 10 100 001 R
, q,

Fig. 2. f(Qr) as a function of Qp Fig. 3 ¢qr) as a function of Qr
(QT>1) (QT<1)

To demonstrate the effectiveness of the above treatment, we
made a comparison between the experimental results listed in
reference[2] and the calculations. The conditions of the
experiment are: L=1750m, A=0.5um, a;=2.36cm, point light source.
According to the definitions given in this paper, we obtained
QT=2; we also obtained f(Q;)=0.804 from Eq. (23). Fig. 4 shows a
comparison between the experiment and the theory, where the
straight line 1 is g,=1.03C,L"”(2a;)"" , derived from the weak
perturbation theory, while the straight line 2 is the result of
this paper. This figure indicates that the expected value in the
weak perturbation theory already deviates greatly from the
experimental value at o>20urad, while the results given in this
paper conform to the actual situation to a greater degree. It is
noteworthy that when o.02a, it is equivalent to
C? =(2~6)x10Pm??, being a mid to strong turbulence state. It

can be further expected that Eq. (23) is possibly applicable to
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the strong fluctuation zone.

5. Conclusions

By using the Markov approximation, and the quadratic
approximation of average intensity, we acquired the general
expression of the angle-of-arrival variance and derived the
analytic formula of for plane waves and spherical waves. The
practicability of these results is surely limited due to the
foregoing approximation.

50
40 2
- * ":t ¢
:'. o 0% .
. (e .O".h *
B 30 . Sy e et
X *Lo o % 2 ] * . L
\i :-. D .o .
b-‘ 20 ~ / - '. e o
10f -‘
1 1 1 1 1
0 10 20 30 40 50 60
aL Thn,/"rad

Fig. 4. Comparison of theory with experiment
KEY: 1 - small-perturbation theory 2 - our
calculation

However, the Markov approximation is a traditional method dealing
with wave propagation through turbulent media and has been
supported by experiments[1l]. As for the square approximation of
average intensity, it serves as an ideal approximation according
to Leader[8]. As a matter of fact, our calculation results of
plane waves proved to conform to the mature theory with regard to
weak turbulent flows, and our calculation results of spherical
waves were supported by experiments, which suggests that the
above-mentioned assumption is reasonable.

11




In summary, by comparing our calculations with the mature
theory and the experiment, it is demonstrated that the results
obtained in this paper are rational and possibly are applicable
to the entire fluctuation zone. Despite this, our results are
expected to be further verified due to insufficient experimental
data and particularly those under different conditions.
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